Copied to
clipboard

G = C23.624C24order 128 = 27

341st central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C23.624C24, C24.419C23, C22.2992- 1+4, C22.3972+ 1+4, (C2×D4).145D4, C23.221(C2×D4), C2.75(D46D4), C23.11D499C2, C2.51(C233D4), (C23×C4).157C22, (C22×C4).887C23, (C2×C42).675C22, C23.8Q8120C2, C22.433(C22×D4), (C22×D4).253C22, C23.81C2399C2, C24.3C22.64C2, C23.65C23134C2, C2.C42.330C22, C2.36(C22.53C24), C2.26(C22.57C24), C2.76(C22.33C24), (C2×C4).119(C2×D4), (C2×C4).205(C4○D4), (C2×C4⋊C4).437C22, C22.486(C2×C4○D4), (C2×C22⋊C4).288C22, (C2×C22.D4).30C2, SmallGroup(128,1456)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.624C24
C1C2C22C23C24C23×C4C23.8Q8 — C23.624C24
C1C23 — C23.624C24
C1C23 — C23.624C24
C1C23 — C23.624C24

Generators and relations for C23.624C24
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=f2=g2=cb=bc, ab=ba, faf-1=ac=ca, ad=da, ae=ea, gag-1=abc, bd=db, geg-1=be=eb, bf=fb, bg=gb, cd=dc, ce=ec, gfg-1=cf=fc, cg=gc, fef-1=de=ed, df=fd, dg=gd >

Subgroups: 500 in 252 conjugacy classes, 96 normal (14 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22.D4, C23×C4, C22×D4, C23.8Q8, C23.65C23, C24.3C22, C23.11D4, C23.81C23, C2×C22.D4, C23.624C24
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, 2+ 1+4, 2- 1+4, C233D4, C22.33C24, D46D4, C22.53C24, C22.57C24, C23.624C24

Smallest permutation representation of C23.624C24
On 64 points
Generators in S64
(5 37)(6 38)(7 39)(8 40)(13 15)(14 16)(17 51)(18 52)(19 49)(20 50)(21 43)(22 44)(23 41)(24 42)(29 31)(30 32)(33 62)(34 63)(35 64)(36 61)(45 47)(46 48)(57 59)(58 60)
(1 9)(2 10)(3 11)(4 12)(5 37)(6 38)(7 39)(8 40)(13 45)(14 46)(15 47)(16 48)(17 49)(18 50)(19 51)(20 52)(21 43)(22 44)(23 41)(24 42)(25 55)(26 56)(27 53)(28 54)(29 59)(30 60)(31 57)(32 58)(33 64)(34 61)(35 62)(36 63)
(1 11)(2 12)(3 9)(4 10)(5 39)(6 40)(7 37)(8 38)(13 47)(14 48)(15 45)(16 46)(17 51)(18 52)(19 49)(20 50)(21 41)(22 42)(23 43)(24 44)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 62)(34 63)(35 64)(36 61)
(1 25)(2 26)(3 27)(4 28)(5 22)(6 23)(7 24)(8 21)(9 55)(10 56)(11 53)(12 54)(13 59)(14 60)(15 57)(16 58)(17 63)(18 64)(19 61)(20 62)(29 45)(30 46)(31 47)(32 48)(33 50)(34 51)(35 52)(36 49)(37 44)(38 41)(39 42)(40 43)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 51 3 49)(2 35 4 33)(5 14 7 16)(6 57 8 59)(9 19 11 17)(10 62 12 64)(13 23 15 21)(18 56 20 54)(22 60 24 58)(25 34 27 36)(26 52 28 50)(29 38 31 40)(30 42 32 44)(37 46 39 48)(41 47 43 45)(53 63 55 61)
(1 47 3 45)(2 16 4 14)(5 62 7 64)(6 36 8 34)(9 15 11 13)(10 48 12 46)(17 43 19 41)(18 22 20 24)(21 51 23 49)(25 31 27 29)(26 58 28 60)(30 56 32 54)(33 37 35 39)(38 63 40 61)(42 50 44 52)(53 59 55 57)

G:=sub<Sym(64)| (5,37)(6,38)(7,39)(8,40)(13,15)(14,16)(17,51)(18,52)(19,49)(20,50)(21,43)(22,44)(23,41)(24,42)(29,31)(30,32)(33,62)(34,63)(35,64)(36,61)(45,47)(46,48)(57,59)(58,60), (1,9)(2,10)(3,11)(4,12)(5,37)(6,38)(7,39)(8,40)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,43)(22,44)(23,41)(24,42)(25,55)(26,56)(27,53)(28,54)(29,59)(30,60)(31,57)(32,58)(33,64)(34,61)(35,62)(36,63), (1,11)(2,12)(3,9)(4,10)(5,39)(6,40)(7,37)(8,38)(13,47)(14,48)(15,45)(16,46)(17,51)(18,52)(19,49)(20,50)(21,41)(22,42)(23,43)(24,44)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,62)(34,63)(35,64)(36,61), (1,25)(2,26)(3,27)(4,28)(5,22)(6,23)(7,24)(8,21)(9,55)(10,56)(11,53)(12,54)(13,59)(14,60)(15,57)(16,58)(17,63)(18,64)(19,61)(20,62)(29,45)(30,46)(31,47)(32,48)(33,50)(34,51)(35,52)(36,49)(37,44)(38,41)(39,42)(40,43), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,51,3,49)(2,35,4,33)(5,14,7,16)(6,57,8,59)(9,19,11,17)(10,62,12,64)(13,23,15,21)(18,56,20,54)(22,60,24,58)(25,34,27,36)(26,52,28,50)(29,38,31,40)(30,42,32,44)(37,46,39,48)(41,47,43,45)(53,63,55,61), (1,47,3,45)(2,16,4,14)(5,62,7,64)(6,36,8,34)(9,15,11,13)(10,48,12,46)(17,43,19,41)(18,22,20,24)(21,51,23,49)(25,31,27,29)(26,58,28,60)(30,56,32,54)(33,37,35,39)(38,63,40,61)(42,50,44,52)(53,59,55,57)>;

G:=Group( (5,37)(6,38)(7,39)(8,40)(13,15)(14,16)(17,51)(18,52)(19,49)(20,50)(21,43)(22,44)(23,41)(24,42)(29,31)(30,32)(33,62)(34,63)(35,64)(36,61)(45,47)(46,48)(57,59)(58,60), (1,9)(2,10)(3,11)(4,12)(5,37)(6,38)(7,39)(8,40)(13,45)(14,46)(15,47)(16,48)(17,49)(18,50)(19,51)(20,52)(21,43)(22,44)(23,41)(24,42)(25,55)(26,56)(27,53)(28,54)(29,59)(30,60)(31,57)(32,58)(33,64)(34,61)(35,62)(36,63), (1,11)(2,12)(3,9)(4,10)(5,39)(6,40)(7,37)(8,38)(13,47)(14,48)(15,45)(16,46)(17,51)(18,52)(19,49)(20,50)(21,41)(22,42)(23,43)(24,44)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,62)(34,63)(35,64)(36,61), (1,25)(2,26)(3,27)(4,28)(5,22)(6,23)(7,24)(8,21)(9,55)(10,56)(11,53)(12,54)(13,59)(14,60)(15,57)(16,58)(17,63)(18,64)(19,61)(20,62)(29,45)(30,46)(31,47)(32,48)(33,50)(34,51)(35,52)(36,49)(37,44)(38,41)(39,42)(40,43), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,51,3,49)(2,35,4,33)(5,14,7,16)(6,57,8,59)(9,19,11,17)(10,62,12,64)(13,23,15,21)(18,56,20,54)(22,60,24,58)(25,34,27,36)(26,52,28,50)(29,38,31,40)(30,42,32,44)(37,46,39,48)(41,47,43,45)(53,63,55,61), (1,47,3,45)(2,16,4,14)(5,62,7,64)(6,36,8,34)(9,15,11,13)(10,48,12,46)(17,43,19,41)(18,22,20,24)(21,51,23,49)(25,31,27,29)(26,58,28,60)(30,56,32,54)(33,37,35,39)(38,63,40,61)(42,50,44,52)(53,59,55,57) );

G=PermutationGroup([[(5,37),(6,38),(7,39),(8,40),(13,15),(14,16),(17,51),(18,52),(19,49),(20,50),(21,43),(22,44),(23,41),(24,42),(29,31),(30,32),(33,62),(34,63),(35,64),(36,61),(45,47),(46,48),(57,59),(58,60)], [(1,9),(2,10),(3,11),(4,12),(5,37),(6,38),(7,39),(8,40),(13,45),(14,46),(15,47),(16,48),(17,49),(18,50),(19,51),(20,52),(21,43),(22,44),(23,41),(24,42),(25,55),(26,56),(27,53),(28,54),(29,59),(30,60),(31,57),(32,58),(33,64),(34,61),(35,62),(36,63)], [(1,11),(2,12),(3,9),(4,10),(5,39),(6,40),(7,37),(8,38),(13,47),(14,48),(15,45),(16,46),(17,51),(18,52),(19,49),(20,50),(21,41),(22,42),(23,43),(24,44),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,62),(34,63),(35,64),(36,61)], [(1,25),(2,26),(3,27),(4,28),(5,22),(6,23),(7,24),(8,21),(9,55),(10,56),(11,53),(12,54),(13,59),(14,60),(15,57),(16,58),(17,63),(18,64),(19,61),(20,62),(29,45),(30,46),(31,47),(32,48),(33,50),(34,51),(35,52),(36,49),(37,44),(38,41),(39,42),(40,43)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,51,3,49),(2,35,4,33),(5,14,7,16),(6,57,8,59),(9,19,11,17),(10,62,12,64),(13,23,15,21),(18,56,20,54),(22,60,24,58),(25,34,27,36),(26,52,28,50),(29,38,31,40),(30,42,32,44),(37,46,39,48),(41,47,43,45),(53,63,55,61)], [(1,47,3,45),(2,16,4,14),(5,62,7,64),(6,36,8,34),(9,15,11,13),(10,48,12,46),(17,43,19,41),(18,22,20,24),(21,51,23,49),(25,31,27,29),(26,58,28,60),(30,56,32,54),(33,37,35,39),(38,63,40,61),(42,50,44,52),(53,59,55,57)]])

32 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4N4O···4T
order12···222224···44···4
size11···144444···48···8

32 irreducible representations

dim11111112244
type+++++++++-
imageC1C2C2C2C2C2C2D4C4○D42+ 1+42- 1+4
kernelC23.624C24C23.8Q8C23.65C23C24.3C22C23.11D4C23.81C23C2×C22.D4C2×D4C2×C4C22C22
# reps14214224822

Matrix representation of C23.624C24 in GL6(𝔽5)

100000
010000
001000
004400
000010
000044
,
100000
010000
004000
000400
000010
000001
,
100000
010000
001000
000100
000040
000004
,
400000
040000
001000
000100
000010
000001
,
020000
300000
002000
003300
000030
000003
,
010000
100000
003000
000300
000024
000003
,
100000
010000
004300
001100
000043
000011

G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,4,0,0,0,0,0,4,0,0,0,0,0,0,1,4,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,3,0,0,0,0,2,0,0,0,0,0,0,0,2,3,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,4,3],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,1,0,0,0,0,3,1,0,0,0,0,0,0,4,1,0,0,0,0,3,1] >;

C23.624C24 in GAP, Magma, Sage, TeX

C_2^3._{624}C_2^4
% in TeX

G:=Group("C2^3.624C2^4");
// GroupNames label

G:=SmallGroup(128,1456);
// by ID

G=gap.SmallGroup(128,1456);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,336,253,344,758,723,268,1571,346]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=f^2=g^2=c*b=b*c,a*b=b*a,f*a*f^-1=a*c=c*a,a*d=d*a,a*e=e*a,g*a*g^-1=a*b*c,b*d=d*b,g*e*g^-1=b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,c*e=e*c,g*f*g^-1=c*f=f*c,c*g=g*c,f*e*f^-1=d*e=e*d,d*f=f*d,d*g=g*d>;
// generators/relations

׿
×
𝔽